
Forward Model Approximation
for General Video Game Learning

Alexander Dockhorn
Otto von Guericke University

Magdeburg, Germany
alexander.dockhorn@ovgu.de

Daan Apeldoorn
Z Quadrat GmbH
Mainz, Germany

daan.apeldoorn@z-quadrat-mainz.de

Abstract—This paper proposes a novel learning agent model
for a General Video Game Playing agent. Our agent learns an
approximation of the forward model from repeatedly playing
a game and subsequently adapting its behavior to previously
unseen levels. To achieve this, it first learns the game mechanics
through machine learning techniques and then extracts rule-
based symbolic knowledge on different levels of abstraction.
When being confronted with new levels of a game, the agent is
able to revise its knowledge by a novel belief revision approach.
Using methods such as Monte Carlo Tree Search and Breadth
First Search, it searches for the best possible action using
simulated game episodes. Those simulations are only possible
due to reasoning about future states using the extracted rule-
based knowledge from random episodes during the learning
phase. The developed agent outperforms previous agents by a
large margin, while still being limited in its prediction capabilities.
The proposed forward model approximation opens a new class of
solutions in the context of General Video Game Playing, which
do not try to learn a value function, but try to increase their
accuracy in modelling the game.

Index Terms—Forward Model Approximation, General Video
Games, exception-tolerant Hierarchical Knowledge Bases, Belief
Revision, Monte Carlo Tree Search, Breadth First Search

I. INTRODUCTION

The development of General Intelligence (i. e., intelligent
algorithms that are able to cope with multiple kinds of different
problems) is one of the key long term goals in Artificial
Intelligence (AI) research. To evaluate approaches for this
long term goal, in recent years, the General Game Playing
challenge [1] and (more recently) the General Video Game
Playing Artificial Intelligence (GVGAI) competition [2] have
been developed, where agents have to play several different
types of games which are not (concretely) known in advance.

In this paper, we present a novel approach of a learning agent
which learns to play different video games in the context of the
GVGAI competition [2]. To achieve this, we combine multiple
concepts from both the symbolic and the subsymbolic artificial
intelligence communities using machine learning together with
belief revision and action selection. More precisely, our agent
first uses statistical methods to learn the game mechanics in
form of an approximated forward model. In this study we
use exception-tolerant Hierarchical Knowledge Bases (HKBs)
[3], containing rules on multiple levels of abstraction, to learn
and store the approximated forward model. These knowledge
bases are later revised when the agent is confronted with new

or changed environments (e. g., new levels) by a novel belief
revision approach for HKBs.

Those knowledge bases can be used while playing the game
for reasoning about the value of future states. Based on previous
experiences we can partially simulate the outcome of our future
actions, enabling us to use well-known search schemes for
action selection. In this study we use Monte Carlo Tree Search
(MCTS) and Breadth First Search (BFS) to evaluate future
states. Finally, we choose the action with the highest expected
outcome and return it for execution.

The main contributions of the paper are:
• a learning approach which is able to quickly learn the

mechanics of dynamic environments (e. g., games) in form
of an approximated forward model

• representing and storing the approximated forward model
in human readable format as HKBs (i. e., rule-based knowl-
edge which is organized on multiple levels of abstraction)

• a simple belief revision approach for HKBs
• an agent architecture using the generated approximated

forward model with a flexible action selection mechanism
• an agent model to be used for the GVGAI learning-track
Section II briefly outlines related work and in Section III the

preliminaries needed for our agent model will be introduced.
After that, in Section IV, we describe the details of creating and
using an approximated forward model in context of an agent
for the GVGAI competition. In Section V, we evaluate and
compare the proposed approach with other known agents based
on several games from the GVGAI competition. A conclusion
and an outlook on future work are given in Section VI.

II. GENERAL GAME PLAYING

Next to the many efforts put into artificial intelligence
methods for various board games such as Chess, Morris, and
Go, the Stanford General Game Playing competition [1] asked
its participants to implement agents, which can compete in
a set of previously unknown games. Playing agents needed
to act based on the current state of the board and a set of
simple rules. Many attempts have been made to create similar
description languages for the definition of video games.

Thanks to the efforts of Tom Schaul, the Video Game
Definition Language [4] was created. Based on his work the
General Video Game AI (GVGAI) competition was created. It
offers a framework, in which many arcade like video games

were replicated. Here, an agent receives a state description
and a set of up to five possible actions. Those actions are
named after buttons of a typical game controller and map the
buttons ”Up”, ”Down”, ”Right”, ”Left”, ”Action”. However,
the outcome of each action is completely dependent on the
rules of the game, such that a suitable policy needs to be
learned for each problem individually.

In recent years the competition offered multiple tracks, which
focus on different aspects of general video game playing. The
next sections quickly summarize the single player game playing
and the learning track. In the remainder of this paper we will
focus on the study of the learning track.

A. GVGAI - Single Player Game Playing Track

The currently most popular track is the single player game
playing track. Here, a forward model is provided to the agents,
which can be used to simulate the outcome of an action.

In 2017 a total of 22 submissions entered the competition
(including 5 sample submission provided by the competition
hosts). The currently best performing agent, Yolobot [5], uses
a mix of BFS and MCTS. While the former is used in games,
which include deterministic state transitions, the latter is applied
to all non-deterministic games. Additionally, the algorithm
identifies reachable objects and rates its interest on them. Either
BFS or MCTS is used to find a suitable path to potential targets,
while avoiding any dangers.

Due to the inclusion of non-deterministic games, the applica-
tion of MCTS variants such as Open Loop MCTS (OLMCTS)
were studied in multiple works (see a summary of agents in
[6]). OLMCTS and other tree searching algorithms such as
Open Loop Expectimax Tree Search are able to quickly sample
possible action sequences and evaluate their outcome [5].

Next to tree search algorithms, the search of action sequences
based on genetic algorithms showed to be a popular choice.
Methods such as the Rolling Horizon Algorithm [7] evolve
short action sequences and evaluate their outcome based on a
scoring function similar to OLMCTS.

The overall performance of agents in the game playing
track is already very good. Despite being confronted with a
previously unknown game, the agents are often able to win
a game or at least find action sequences, which yield a high
score.

B. GVGAI - Single Player Game Learning Track

In contrast to the game playing track, the game learning
track has an increased difficulty due to the forward model
being removed as a source of information from the agent. All
previously discussed methods heavily rely on such a forward
model, which enables the agent to run simulations for all
possible actions. Therefore, new algorithms need to be found
for solving problems of this domain.

The agent developed by Ercüment İlhan [8] uses an MCTS
agent, which was enhanced with an online on-policy temporal-
difference learning method, called true online Sarsa(λ) [9].
Here, the agent optimizes its estimation of the state-action
value function by continuously revising it based on the repeated

interactions with the game environment. This agent performed
best in the training set, but only placed 5th in the evaluation
game set (slightly ahead of an adaptation of the Yolobot from
the game playing track). Not much information is available on
the other agents.

Surprisingly the random controller provided by the competi-
tion organizers performed second best in the evaluation set, just
three points worse than the first place. This shows that well-
known methods for value estimation or policy improvement do
not work at their full potential using the limited information in
this track. Short time frames for learning the games rules (≤
5 minutes) and decision-making (40ms) drastically limit the
applicability of iterative methods or long search procedures.
Hence, there is still more room for improvement.

Our work is motivated by the huge performance gap between
agents of the game playing and game learning track and
the idea that machine learning combined with methods from
symbolic knowledge representation can contribute to create
an appropriate agent model. This work will show how the
introduction of approximated forward models and efficient
learning and operation schemes can help us in developing new
kinds of agents.

III. PRELIMINARIES

This section will briefly outline the preliminaries and com-
ponents needed for our agent model introduced in Section IV
for the GVGAI learning track. We will first explain the basics
needed for our novel approximated forward model for which it
is useful to define Hierarchicle Knowledge Bases (HKB) and
how they can be learned (Subsections III-A to III-C). These sec-
tions will closely follow several preliminary works, especially
[3], [10], [11]. After that, the reasoning algorithm defined on
HKBs will be briefly summarized, following [11] (Subsection
III-D). Subsequently, we will introduce some modifications on
HKBs and the learning process (Subsection III-E) to fit the
needs of our agent model. Finally, we will propose a belief
revision approach for HKBs (Section III-F) and describe a
module for action selection (Subsection III-G).

A. Basic Agent Model for HKBs

We consider an agent which is equipped with n sen-
sors through which it can perceive its current state in the
environment (e. g., a game) and which is able to perform
actions from a predefined action space (e. g., the keys to be
pressed on the controller). Furthermore, the agent can perceive
whether the performed actions were good, in form of (numeric)
rewards. The perceived rewards can then be used to learn a
weighted state-action pair representation where the highest
weight determines which action has to be performed, given a
perceived state.

More formally, in such a representation, a state s is an
element of a multi-dimensional state space S = S1 × ...× Sn
where n is the number of the agent’s sensors and every Si is a
set of possible values of the corresponding sensor. Furthermore,
the agent selects actions from a predefined action set A and
the learned weights are stored in a multi-dimensional matrix

Q̂ = (qs1,...,sn,a) with si ∈ Si and a ∈ A. The weights can
be learned by different machine learning approaches, provided
that the learning approach results in a representation such that
given a state, the highest weight determines the best action to
be selected (i. e., amax

s1,...,sn = argmax
a′∈A

qs1,...,sn,a′).

After selecting an action the environment responds
with a reward and a successor state st+1. In general a
game can be modelled as a probability distribution over
P (st+1, rt+1|s0, a0, r1, s1, a1, . . . , rt, st, at), which maps the
probability of each successor state and its accompanied reward
depending on all previous interactions. Analysing or storing
such a probability distribution is near to impossible, due to
its exponentially growing complexity. When the process to be
analysed fulfils the Markov Property, the probability distribution
reduces to P (st+1, rt+1|st, at), in which each successor state
and its reward is only dependent on the environment’s last state
and the agent’s last chosen action. Our target will be to construct
a classifier, hereinafter referred to as approximated forward
model, which approximates the distribution P (st+1, rt+1|st, at)
based on previous interactions with the environment.

Such an approximated forward model can be split into
multiple sub-components in case the multi-dimensional repre-
sentation S consists of independent components. If this is the
case a complete reconstruction of the state S can be achieved
by modelling each independent component separately.

The following subsections introduce HKBs, which will be
used for learning and revising such classifiers during continuous
interactions with the games environment.

B. Definition of HKBs

In [10], an extraction approach is proposed which is able to
extract an HKB from a weighted state-action pair representation
(where the maximum weight determines the best action, given
a state). This section only provides the main definitions needed
to understand the basic idea of HKBs and how they can be
learned from weighted state-action pairs by closely following
[3], [10], [11]. For more details on HKBs, the reader should
refer to the original literature mentioned here. An HKB consists
of rules which are organized on different levels of abstraction.

An HKB can handle multiple rules per level and the rules
also comprise weights (in contrast to Exception Lists [12]).
According to [11] two different kinds of states and two different
kinds of rules need to be distinguished:

Definition 1 (Complete States/Partial States) A complete
state is a conjunction s := s1 ∧ ... ∧ sn of all values si
currently perceived by an agent’s sensors, where n is the
number of sensors and every perceived sensor value si ∈ Si of
the corresponding sensor value set Si is assumed to be a fact
in the agent’s current state. A partial state is a conjunction
s :=

∧
s′∈S s

′ of a subset S ⊂ {s1, ..., sn} of the sensor values
of a complete state.

Definition 2 (Complete Rules/Generalized Rules) Com-
plete rules and generalized rules are of the form pρ ⇒ aρ [wρ],
where pρ is either a complete state (in case of an complete
rule) or a partial state (in case of a generalized rule). The

conclusion aρ ∈ A is an action of the agent’s action space A
and wρ ∈ [0, 1] is the rule’s weight.

Thus, complete rules map complete states to actions and
generalized rules map partial states to actions. An HKB can
now be defined as follows:

Definition 3 (Exception-Tolerant Hierarchical Knowl-
edge Base) An exception-tolerant Hierarchical Knowledge Base
(HKB) is an ordered set KB := {R1, ..., Rn+1} of n+ 1 rule
sets, where n is the number of sensors (i. e., the number of
state space dimensions). Every set Ri<n+1 contains generalized
rules and the set Rn+1 contains complete rules, such that every
premise pρ =

∧
s∈Sρ s of a rule ρ ∈ Ri of length |Sρ| = i− 1.

According to Definition 3, the set R1 contains the most
general rules (with empty premises) and the set Rn+1 contains
the most specific (i. e., complete) rules.

For the relations of rules, the term of needed exception will
be used, according to the following definition (cf. [3]):

Definition 4 (Needed Exception) A rule ρ ∈ Rj>1 is an
exception to a rule τ ∈ Rj−1 with premise pτ =

∧
s∈Sτ s,

action aτ as conclusion and weight wτ , if Sτ ⊂ Sρ and
aρ 6= aτ . The exception is needed, if no other rule υ ∈ Rj−1
exists with premise pυ =

∧
s∈Sυ s and action aυ as conclusion

where Sυ ⊂ Sρ, aυ = aρ and wυ > wτ .

C. Learning HKBs

An HKB can be extracted from a weighted state-action pair
representation Q̂ (that is learned, e. g., through a Reinforcement
Learning technique or by simply counting relative frequencies)
using the following approach originally introduced in [10],
closely following [11] here:

The approach takes a weighted state-action pair representa-
tion Q̂ as input and returns an HKB KBQ̂ which reflects the
knowledge contained in Q̂ by performing the following steps:

1) Initial creation of rule sets:
In the first step, the multiple abstraction levels
R1, ..., Rn+1 of the knowledge base are initially filled
with rules. The weights of generalized rules are created by
averaging the weights in Q̂ over the missing dimensions.1

2) Removal of worse rules:
In all sets Rj , a rule ρ ∈ Rj is removed, if there exists
another rule σ ∈ Rj with the same partial state as premise
having a higher weight.

3) Removal of worse more specific rules:
In all sets Rj>1, a rule ρ ∈ Rj with premise pρ =∧
s∈Sρ s, conclusion aρ and weight wρ is removed, if

there exists a more general rule σ ∈ Rj′<j with premise
pσ =

∧
s∈Sσ s where Sσ ⊂ Sρ = {s1, ..., sj−1} and

weight wσ ≥ wρ.
4) Removal of too specific rules:

In all sets Rj , a rule ρ ∈ Rj>1 with premise pρ =
∧
s∈Sρ

and conclusion aρ is removed, if there exists a more

1For performance reasons, only state-action pairs can be considered here that
contribute to the best policy found by the preceding learning process (see [3]
for a first attempt to a more efficient algorithm that preselects potentially
relevant rules in this step).

general rule σ ∈ Rj′<j with the same action aσ = aρ
as conclusion and with premise pσ =

∧
s∈Sσ s where

Sσ ⊂ Sρ = {s1, ..., sj−1} and if ρ is not a needed
exception to a rule τ ∈ Rj−1.

5) Optional filter step:
Optionally, filters may be applied to filter out further
rules which are, e. g., helpful to explain the knowledge
contained in Q̂ through the optimal found policy so far,
but which are not needed for reasoning later.

After performing these steps on Q̂, the knowledge base KBQ̂
comprises all sets Rj 6= ∅ with the extracted rules representing
the implicit knowledge contained in the learned weights of Q̂
in a compact way.

D. Reasoning on HKBs

This section briefly summarizes the basic idea of the efficient
reasoning algorithm on HKBs which was first introduced in
[10]. The summary closely follows [11]:

Given perceived sensor values s1, ..., sn, the reasoning
algorithm searches an HKB upwards (starting from the bottom-
most level Rn+1) for the first rule, which premise is fulfilled.
This rule is then returned as concluding action (see [10] for
details). By this, the algorithm selects the most specific rule
that fits to the perceived sensor values and falls back to the
next more unspecific rule (which serves as a heuristic), in case
no more specific rule with a fitting premise could be found.

E. Modifications for Our Agent Model

In this section, the original HKB approach according to [3],
[10], [11] (which was outlined in the previous Sections III-A
to III-C) will be modified to fit the needs of our agent model
for the learning track of the GVGAI competition. A knowledge
representation based on exceptions which are layered on several
levels of abstraction is a rather useful approach to gain a
compact representation of the knowledge about an environment
like a game (which can also be exploited during a learning
process as has been demonstrated in [10], [11]). Nevertheless,
according to the GVGAI competition specification, our learning
agent is supposed to work in multiple levels of a game and
the agent furthermore only sees three out of five levels in
the training phase. Thus, the agent should be able to learn
the general mechanics of the game rather than optimizing its
behavior for a single level.

For this purpose, we modify the definitions of HKBs
(especially Definition 2) such that rules no longer represent
a mapping of a state to an action but a mapping of a state
and an action which was performed in that state to a resulting
subsequent state.

More formally, rules contained in the HKB are now defined
as follows:

Definition 5 (Modified Complete Rules/Generalized Rules)
The modified complete rules and generalized rules are of the
form pρ ∧ a ⇒ p′ρ [wρ], where pρ is either a complete state
(in case of a complete rule) or a partial state (in case of a
generalized rule), aρ ∈ A is an action of the agent’s action
space A, p′ρ represents one (or more) sensor value(s) of a

subsequent state (resulting from action a performed in state
pρ) and wρ ∈ [0, 1] is the rule’s weight. The sensor values of
p′ρ do not necessarily need to be of the same sensors used
for pρ.

Note that since the creation of HKBs from data is com-
putationally rather expensive (cf. [10], see [3] for a first
attempt towards a faster algorithm for HKB extraction). In
case of our agent model, we will only consider small subsets
S′ ⊂ {S1, ...,Sn} of the agent’s state space dimensions for pρ
and p′ρ in Definition 5. This results in several smaller HKBs
where every HKB represents a certain aspect of the agent’s
collected knowledge about the environment. Furthermore, a
merging technique will be used to gain an HKB for higher
dimensional state spaces by merging multiple smaller HKBs.
(For details see Section IV.)

In addition, the extraction algorithm described in
Section III-C will be extended by the following filter at the
end of Step 5: All rules ρ ∈ Rj>1, which premise does not
contain an action will be removed.

In the following, the idea of such modified HKBs will
initially be explained in the context of the game Butterflies
from the GVGAI competition framework [2].

Example 1 (Butterflies) We consider the game Butterflies
from the GVGAI competition framework [2], where an agent
has to collect butterflies by touching them (see left part of
Figure 1): Every time when collecting a butterfly, the agent’s
current score is increased by 2. To learn knowledge about
the scoring of the game, the agent’s surrounding objects and
its orientation are considered as a subset of the state space
dimensions. Furthermore, the agent’s action space is given
as usual (i. e., A := {Up,Down,Left,Right,Use (,None)}).
After a short training phase, the learned HKB regarding the
knowledge of the scoring of the game (i. e., which actions lead
to which changes regarding the agent’s current score, given a
state) is shown in the right part of Figure 1.

Fig. 1. Excerpt from the First Level of the GVGAI Game Butterflies with
Corresponding HKB of the Agent’s Knowledge About the Scoring in the
Game After a Short Training Phase

The HKB resulting from Example 1 (right part of Figure 1)
can be read as follows: According to the single rule score±0
on the most general level R1 (which has an empty premise),
the agent learned that in general (when no action is performed),
no score changes are expected. This covers most of the cases
as indicated by the high weight. According to the four rules on
level R3, the agent learned that if an object with id 5 (i. e., a
butterfly) is perceived above, below, to the left or to the right of

the agent and the agent performs an action in the corresponding
direction of the object, then the score is increased by 2. The
weights of 1.0 indicate that this should happen in all cases
when perceiving these objects and performing these actions.
Level R2 does not contain any rules, thus there are no relevant
exceptions from the most general rule on level R1 in this
game that are only based on actions (without considering any
surrounding objects). Furthermore, level R4 is also empty, since
there are no relevant exceptions from the rules on level R3

that additionally involve the orientation of the agent.

F. Belief Revision on HKBs

Unlike relearning knowledge that is once gained by subsym-
bolic machine learning approaches (e. g., during the training
phase of a game), a much more efficient solution could be
a symbolic revision approach used on a previously learned
knowledge base. By this, the learned knowledge can be
expanded or changed immediately on a symbolic level instead
of relearning statistically on a subsymbolic level. For this
purpose, this section introduces a novel belief revision approach
for HKBs: The proposed algorithm is a first simple attempt
to realize revision on HKBs and leaves a lot of room for
improvements. Nevertheless, it allows the agent to revise
the learned knowledge represented by an HKB, in case the
environment changes.

We consider a learned HKB with the modifications described
in Section III-E and the reasoning algorithm described in
Section III-D: Given a state representation s and an action a,
and given that the representation of a subsequent state s′

inferred through the HKB is inconsistent with the corresponding
representation of the actual perceived subsequent state s′per of
the agent (i. e., s′ ≡� s′per), the basic processing of the revision
algorithm is as follows:
• Adding a new exception:

If the rule leading to the inconsistent inference is located
on a level Rj<n+1, then a new rule is added on level
Rn+1 with the updated conclusion according to the actual
perceived subsequent state.

• Exchanging an existing exception:
Otherwise, if the inconsistent inference is located on the
most specific level Rn+1, then the conclusion of that rule
is simply replaced by the correct conclusion according to
the actual perceived subsequent state.

By this, the learned knowledge about the game mechanics
can be quickly adapted to changes in the environment (e. g.,
scoring distributions, object localizations or even new kinds of
objects) in case the agent is being confronted with new levels.

G. Action Selection

After a short learning phase we use the extracted HKBs as
approximated forward model to predict the future states after
picking action a. The action selection process will be guided
by two sub-systems. MCTS is used for a broad exploration of
longer action-sequences. In case no preferable solution can be
found, we use BFS to find the shortest path to a state, which
would yield an increase in points. In the following we will

shortly review MCTS. The combination of both sub-systems
and the adaptations made will be introduced in Section IV.

1) Monte Carlo Tree Search (MCTS): In this study we will
make use of MCTS for sampling long-term action sequences.
MCTS is a heuristic search algorithm, which consists of four
phases, (1) node selection, (2) node expansion, (3) simulation,
and (4) backpropagation of the (expected) reward. The first two
steps form the tree policy, while the latter two are also known
as the default policy. The simulation during phase (3) consists
of multiple rollouts of action sequences, which are simulated
using a forward model. A rollout starts at the agent’s current
state and repeatedly chooses actions till either the end of an
episode, at which the winner of the game is known, or any mid-
game state is reached. In case the simulation is stopped before
the end of an episode a scoring function is used to evaluate
the value of the final state. The result of an action is estimated
using a forward model, which describes the transition from
state s to the next state s′ after using action a. The observed
score at the end of an episode is backpropagated to iteratively
improve the value estimation of intermediate states. After all
simulations are completed the agent uses its value estimate to
choose and execute the action with the highest expected return.

Multiple factors influence the capabilities of this search
strategy. Next to the quanity and depth of a rollout, previous
studies on card games showed that the quality of a rollout is
a critical factor for a strong playing behavior [13], [14]. This
introduces a trade-off between the depth, quantity and quality
of a rollout during the simulation phase. All three will be
limited during this study due to the short time span for action
selection and the computational overhead of the approximated
forward model. Subsection IV-B will discuss our optimizations
for MCTS, which facilitate a higher quantity of rollouts.

IV. AGENT MODEL

The agent model builds on the preliminaries described in
Section III. First, the basic composition of the concepts required
to learn the game mechanics will be summarized (Section IV-A).
Consequently, this section focuses on how the action selection
is realized based on these ideas and which modifications where
necessary to optimize the process (IV-B). An overview of the
agent model is provided in Figure 2.

A. Basics

Since the learning track of the GVGAI competition is divided
into a training phase (on three out of five levels of each
game) and an evaluation phase (on already known and two
additional levels), the basic idea is to use the training phase
to accumulate knowledge about the game mechanics in form
of modified HKBs (as described in Section III-E) and to use
planning based on the gained knowledge in the evaluation
phase. Furthermore, a belief revision approach is used during
the evaluation phase in case new experiences are contradicting
the learned knowledge of the training phase in some aspects.

1) Dividing the Learned Knowledge into Different Aspects:
Games can vary widely in their game play and the goals that
have to be reached to win the game. Thus, different aspects of

the game mechanics are important depending on the kind of
game that is played. For this purpose, the knowledge about the
game mechanics will be stored in three different HKBs – one
HKB for one type of knowledge representing one aspect that
might be relevant for decision-making. The following three
aspects are covered:
• HKBmove, Relative Movement: The movement depending

on the relative position to other objects (e. g., obstacles
like “objects of this type cannot be passed”).

• HKBscr, Scoring: Score changes depending on inter-
actions with other objects (e. g., beneficial objects like
“collecting objects of this type increases the score by X”).

• HKBwin, Winning/Losing: Which kind of object interac-
tions lead to winning or losing the game (e. g., objects
that lead to winning the game when touching them).

The division of the forward model into multiple HKBs
can be justified in case the game’s individual components are
independent from another. In this case the complete model is
reconstructible from the outputs of each sub-model.

2) Fast Creation of HKBs for the Different Aspects: As
mentioned in Section III-C and Section III-E, creating HKBs
can be computationally expensive on higher dimensional state
spaces. To overcome this problem, for every HKB contained in
the meta knowledge base, multiple separate HKBs are created
from reduced state spaces with less dimensions. The resulting
HKBs are than merged to one final HKB representing one of
the three types of knowledge {HKBmove,HKBscr,HKBwin}.

In the following, the creation of the Scoring HKB HKBscr
will be exemplarily described (the process is very similar for
the other two types of knowledge in the meta knowledge base):
HKBscr reflects the knowledge about which action

leads to which score change, given the orientation of
the agent and the types of the objects currently sur-
rounding it. The HKB HKBscr could be created (accord-
ing to the algorithm described in Section III-C) from
the matrix Q̂scr = (qsabove, sbelow, sleft, sright,sori, a, sscr) with
sabove, sbelow, sleft, sright ∈ Sobj, sori ∈ Sori, a ∈ A and
sscr ∈ Sscr, where Sobj is the set of object types, Sori is
the set of the agent’s orientations, A is the agent’s action space
and Sscr is the set of score changes. Every element of Q̂scr

represents a learned relative frequency of how often an action
leads to a certain score change, given the agent’s orientation and
the types of objects above, below, left, and right of the agent.

However, instead of creatingHKBscr directly from the seven-
dimensional matrix Q̂scr, as a first step, the four smaller HKBs
HKBabovescr , HKBbelowscr , HKBleftscr and HKBrightscr are created
(each according to the algorithm described in Section III-C).
Each of these HKBs represents the learned knowledge about
the score change, given the orientation of the agent and
a surrounding object focussing only on one of the objects
currently above, below, left, or right of the agent. Every of the
four smaller HKBs is created from an only four-dimensional
matrix which contains the learned relative frequencies how
often an action leads to a certain score change, given the agent’s
orientation and the type of one of the objects above, below,
left or right of the agent, respectively. In case of HKBabovescr ,

random action
selection

if in training phase if not in training phase

count relative
frequencies for
observed state
changes

revision of HKBs

if current state
changes can be
explained by HKBs

if current state
changes cannot be
explained by HKBs

HKB-based
forward model
decision making

current state

next action

create HKBs
for Meta-KB:

 ,

if at the end of
training phase

if not at the end
of training phase

,

Fig. 2. Overview of the Agent Model Incorporating Learning, Revision, and
Action Selection

this matrix has the form Q̂above
scr = (qsabove, sori, a, sscr) with

sabove ∈ Sobj, sori ∈ Sori, a ∈ A and sscr ∈ Sscr, where
Sobj is the set of object types, Sori is the set of the agent’s
orientations, A is the agent’s action space and Sscr is the set
of score changes.

As the second step, the four smaller HKBs that have been
created before are merged to the final HKB HKBscr by adding
all rules of one level to the respective level in the merged
HKB HKBscr. If a rule with the same premise and the same
conclusion already exists on this level, then the rule with the
smallest weight is kept.

By dividing every HKB in several smaller HKBs (each
representing only a subset of the state dimensions of the
corresponding complete HKB), the computational challenge of
creating the entire meta knowledge base could be overcome
and all HKBs of the meta knowledge base can be created in
acceptable time.

B. Action Selection

After the training time expired we use and revise the
extracted HKBs during the action selection phase. Many
agents in the game playing track already based their action
selection on MCTS. Applying MCTS in the learning track
is not straightforward, since the necessary simulation for the
rollouts is not available. We use the generated HKBs to create
an approximation of the forward model. The additional time
spent on the calculation of future states limits the search depth
considerably. During our tests we aimed for 20 simulations
using a search depth of 20 actions. Using this approximation we

are able to partially simulate future states. We use a discounted
return based on all received simulated rewards between start
and end of the rollout. The action, which yields the highest
average return is chosen as the agent’s next action.

Similar to the agent Yolobot we tested BFS as an alternative
to MCTS. However, some adaptations to vanilla breadth first
search were necessary to compensate for the additional time
spent on calculating the future states and the high number of
states to be processed in deeper layers. Since those methods
showed to be beneficial in the application of both search
procedures, we also added them to the MCTS implementation.

1) Fast Forward Prediction: Many games consist of con-
tinuous movements in which the agent needs to use the same
action multiple times in a row. We make use of this fact by
multiplying the outcome of a relative movement times the block
size of the game. This considerably reduces the simulation
steps needed for long movements and allows the agent to
explore far positions during a single rollout.

2) State Pruning: In general, we cannot be sure which states
to prune, since state transitions are only partially simulated.
As an unpruned tree grows exponentially in size, it is near to
impossible to reach higher search depths using breadth first
search in the available time. Therefore, we consider states to
be equal in case they yield the same agent position, score, and
winner. Using this pruning strategy movements such as ”first
up, then left” and ”first left, then up” are considered to yield
the same result and are only processed once.

V. EVALUATION

Our approach is evaluated and compared with other agents
using multiple games from the GVGAI framework. In Sub-
section II-B we already summarized the previous agents’
frameworks in learning and playing unknown games. Because
the implementations of other agents are currently not public, we
use the same set of games used in the CIG 2017 training set, for
which the competition web page2 offers detailed results on the
agents’ performances. For each of the 10 games we train our
agent for about 50 seconds cycling through the first 3 levels, in
contrast to a maximum of 5 minutes of training time provided
by the competition framework. After the first 50 seconds we use
the collected observation data to construct our knowledge bases,
which takes less than 1 minute in which the agent continuous
using random actions. Using the approximated forward model
we play 10 rounds on each of the two remaining levels per
game. The average score after playing those 20 rounds is
reported in Table I. Next to the results of our agent, we list the
performances of all the agents of the 2017 GVGAI learning-
track competition.

This evaluation is limited due to the unavailability of agent
implementations and the limited number of recorded results on
the competition web page. Nevertheless, the 10 chosen games
of the training set represent a well mixed set of games, which
require the agents to play well in a variety of scenarios.

Our approach is the single best agent in 5 out of 10 games
and second best in 1 game. We beat the previously best agent by

2http://gvgai.net/gvg rankings learning 1p.php

a large degree in games such as Boulderdash, Butterflies, and
Survive Zombies. In those games the agent wins by moving on
the same or neighbouring position as other objects or characters.
Here, the applied search scheme can work to its full potential,
because the extracted knowledge predicts future states with
high accuracy.

The proposed framework excels in games such as Butterflies
and Survive Zombies. After the agent learns how to move
(represented in HKBmove), he easily scores points by searching
a path to the nearest objective, which is either a butterfly or a
zombie respectively. In the game Survive Zombies he also needs
to apply knowledge about the winning and losing condition
(HKBwin). In case the player runs out of health he quickly
needs to collect a healing item while avoiding zombies. As it
was the case for chasing, the same search schemes are efficient
in avoiding the dangers while searching for an item.

In two of the remaining games (Frogs, Portals) our agent
and all other agents score zero points. This is due to the sparse
reward given in both games. For this reason, our agent is not
able to rate an action based on the return, because the score
does not change till the endpoint of our simulated episode.
Hence, we are not able to differentiate between good and bad
actions, such that our agent falls back to random behaviour.

The same effect can be observed in the game Sokoban, which
additionally to the sparse reward requires planning of a long
action sequence. Currently learned knowledge bases do not
consider movement of non-player entities, which are necessary
to solve the puzzles provided in each level. For this reason it
is impossible to plan the necessary action sequences to win
the game. Hence, the agent once again falls back to choosing
actions at random.

Despite the good performance, our agent has still much
more room for improvement in games such as Aliens and
Boulderdash. The current score could be improved by taking
the actions of non-player characters into account. For example,
in the game Alien the movement of the aliens and the fired shots
can be predicted very easily. Using this information should
allow to plan how an enemy can be hit.

To get an overview on the overall performance of our agent
we applied the Formula 1 Scoring system, which was already
used in the original competition. Here, the agents are ranked
based on their average points per game. Depending on their
ranking the agents receive 25, 18, 15, 12, 10, 8, or 6 points,
whereas the best agent receives the most points. Table II shows
the score each agent received per game and its sum over all
games. Our results show that the proposed agent outperforms
previous agents by a large margin of 32 points.

VI. CONCLUSION AND FUTURE WORK

With the help of the proposed Forward Model Approximation,
we are able to outperform other agents of the GVGAI learning
track using only about a fifth of the available learning time,
plus less than one additional minute for the creation of the
knowledge bases. Our proposed algorithm learns a prediction
of future states based on a given state and an action to be
applied. This prediction model is split into multiple individual

TABLE I
AGENT PERFORMANCES ON THE GVGAI-LEARNING TRACK GAMES,

G1 = ALIENS, G2 = BOULDERDASH, G3 = BUTTERFLIES, G4 = CHASE, G5 = FROGS,
G6 = MISSILE COMMAND, G7 = PORTALS, G8 = SOKOBAN, G9 = SURVIVE ZOMBIES, G10 = ZELDA

AGENTS: FMA = FORWARD MODEL APPROXIMATION, DUU = DONTUNDERESTIMATEUCHIHA

Agent Name Win Rate / Average Points per Game
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

FMA 0.30 / 35.4 0.00 / 2.1 1.00 / 18.7 0.00 / 1.1 0.00 / 0.0 0.50 / -1.8 0.00 / 0.0 0.10 / 0.9 0.00 / 1.3 0.00 / 0.4

ercumentilhan 0.45 / 37.3 0.00 / 1.3 0.90 / 18.6 0.00 / 0.7 0.00 / 0.0 0.50 / -0.1 0.00 / 0.0 0.00 / 0.7 0.00 / 0.1 0.00 / -0.1
sampleRandom 0.10 / 29.8 0.00 / 1.4 0.85 / 19.3 0.00 / 0.5 0.00 / 0.0 0.50 / -0.5 0.00 / 0.0 0.10 / 0.8 0.00 / -0.1 0.00 / 0.3
sampleLearner 0.20 / 34.5 0.00 / 1.3 0.40 / 15.3 0.00 / 0.4 0.00 / 0.0 0.50 / -0.4 0.00 / 0.0 0.00 / 0.6 0.00 / 0.1 0.00 / -0.3
DUU 0.75 / 41.2 0.00 / 0.3 0.15 / 11.6 0.00 / 0.0 0.00 / 0.0 0.50 / -0.5 0.00 / 0.0 0.00 / 0.0 0.00 / -0.1 0.00 / 0.0
kkunan 0.35 / 35.6 0.00 / 0.7 0.10 / 11.4 0.00 / 0.0 0.00 / 0.0 0.50 / 0.4 0.00 / 0.0 0.00 / 0.0 0.00 / -0.2 0.00 / -0.3
YOLOBOT 0.45 / 32.3 0.00 / -0.3 — / — 0.00 / 0.0 0.00 / 0.0 0.00 / 0.0 0.00 / 0.0 0.10 / 1.0 0.00 / 0.0 0.00 / -0.5

TABLE II
AGENT SCORE USING THE FORMULA-1 SCORE SYSTEM BASED ON AN AGENT’S AVERAGE POINTS PER GAME

Agent Name G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Total

Forward Model Approximation (FMA) 10 25 25 25 25 8 25 18 25 25 211

ercumentilhan 18 15 18 18 25 18 25 12 18 12 179
sampleRandom 6 18 15 15 25 12 25 15 10 18 159
sampleLearner 8 15 12 12 25 15 25 10 18 10 150
DontUnderestimateUchiha (DUU) 25 8 10 10 25 12 25 8 10 15 148
kkunan 12 10 8 10 25 25 25 8 6 10 139
YOLOBOT 15 6 6 10 25 6 25 25 12 6 136

sub-models, which are first trained on sample interactions with
the game and later revised in case of contradictory observations.
Using the extracted model we apply MCTS and BFS to find
the best possible action at each game tick. The used search
procedures were optimized by applying a state pruning, which
reduces the number of evaluated states during the search phase.

We evaluated our approach in 10 games of the GVGAI
competition. The developed agent overall outperforms previous
algorithms. Our evaluation shows the enormous potential
of forward model approximation. However, there is still
much room for improvement, since the current version only
considers the agents movement during future states. Complex
interaction with other game elements are not yet modeled.
Further improvements could be achieved by generalizing the
prediction to many other attributes. Future work could focus
on analyzing the capabilities of forward model approximation
by increasing the number of predicted variables, while keeping
the computational expense as low as possible.

Additional project files and the detailed evaluation can be
found at: https://doi.org/10.17605/OSF.IO/VN3ZS

REFERENCES

[1] M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview
of the AAAI Competition,” AI Magazin, vol. 26, no. 2, pp. 62–72, 2005.

[2] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M. Lucas,
“General video game ai: Competition, challenges and opportunities,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
and the Twenty-Eighth Innovative Applications of Artificial Intelligence
Conference, D. Schuurmans and M. Wellman, Eds. Palo Alto, California:
AAAI Press, 2016, pp. 4335–4337.

[3] D. Apeldoorn and G. Kern-Isberner, “Towards an understanding of what
is learned: Extracting multi-abstraction-level knowledge from learning
agents,” in Proceedings of the Thirtieth International Florida Artificial
Intelligence Research Society Conference, V. Rus and Z. Markov, Eds.
Palo Alto, California: AAAI Press, 2017, pp. 764–767.

[4] T. Schaul, “A video game description language for model-based or
interactive learning,” IEEE Conference on Computatonal Intelligence
and Games, CIG, 2013.

[5] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “Analyzing the robustness of general video game playing agents,”
IEEE Conference on Computatonal Intelligence and Games, CIG, 2017.

[6] D. Perez Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, and
S. Lucas, “Open Loop Search for General Video Game Playing,”
Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference - GECCO ’15, pp. 337–344, 2015.

[7] R. D. Gaina, J. Liu, S. M. Lucas, and D. Pérez-Liébana, “Analysis
of vanilla rolling Horizon evolution parameters in general video game
playing,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
10199 LNCS, pp. 418–434, 2017.

[8] E. İlhan and A. S. Etaner-Uyar, “Monte Carlo tree search with temporal-
difference learning for general video game playing,” in 2017 IEEE
Conference on Computational Intelligence and Games (CIG). New
York: IEEE, aug 2017, pp. 317–324.

[9] H. van Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado, and
R. S. Sutton, “True Online Temporal-Difference Learning,” Journal of
Machine Learning Research (JMLR), vol. 17, pp. 1–40, dec 2015.

[10] D. Apeldoorn and G. Kern-Isberner, “When should learning agents
switch to explicit knowledge?” in GCAI 2016. 2nd Global Conference
on Artificial Intelligence, ser. EPiC Series in Computing, C. Benzmüller,
G. Sutcliffe, and R. Rojas, Eds., vol. 41. EasyChair Publications, 2016,
pp. 174–186.

[11] ——, “An agent-based learning approach for finding and exploiting
heuristics in unknown environments,” in Proceedings of the Thirteenth
International Symposium on Commonsense Reasoning, London, UK,
November 6-8, 2017, ser. CEUR Workshop Proceedings, A. S. Gordon,
R. Miller, and G. Turán, Eds., vol. 2052. Aachen: CEUR-WS.org, 2018.

[12] L. Michael, “Causal Learnability,” in Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2011). Palo
Alto, California: AAAI Press, 2011, pp. 1014–1020.

[13] A. Dockhorn, C. Doell, M. Hewelt, and R. Kruse, “A decision heuristic
for Monte Carlo tree search doppelkopf agents,” in 2017 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, nov 2017, pp. 1–8.
[Online]. Available: http://ieeexplore.ieee.org/document/8285181/

[14] A. Dockhorn, M. Frick, Ü. Akkaya, and R. Kruse, “Predicting Opponent
Moves for Improving Hearthstone AI,” in 17th International Conference
on Information Processing and Management of Uncertainty in Knowledge-
Based Systems (IPMU), 2018, p. (to be published).

